We have a suspicion that you are an automated web bot software, not a real user. To keep our site fast for other users, we have slowed down this page. The slowdown will gradually disappear. If you think this is a mistake, please contact us at genome-www@soe.ucsc.edu. Also note that all data for hgGeneGraph can be obtained through our public MySQL server and all our software source code is available and can be installed locally onto your own computer. If you are unsure how to use these resources, do not hesitate to contact us.
UCSC Genome Browser Gene Interaction Graph
Gene interactions and pathways from curated databases and text-mining
PloS one 2013, PMID: 23690929

mTOR inhibitors control the growth of EGFR mutant lung cancer even after acquiring resistance by HGF.

Ishikawa, Daisuke; Takeuchi, Shinji; Nakagawa, Takayuki; Sano, Takako; Nakade, Junya; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Nakamura, Takahiro; Matsumoto, Kunio; Kagamu, Hiroshi; Yoshizawa, Hirohisa; Yano, Seiji

Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib, is a critical problem in the treatment of EGFR mutant lung cancer. Several mechanisms, including bypass signaling by hepatocyte growth factor (HGF)-triggered Met activation, are implicated as mediators of resistance. The mammalian target of rapamycin (mTOR), is a downstream conduit of EGFR and MET signaling, and is thus considered a therapeutically attractive target in the treatment of various types of cancers. The purpose of this study was to examine whether 2 clinically approved mTOR inhibitors, temsirolimus and everolimus, overcome HGF-dependent resistance to EGFR-TKIs in EGFR mutant lung cancer cells. Both temsirolimus and everolimus inhibited the phosphorylation of p70S6K and 4E-BP1, which are downstream targets of the mTOR pathway, and reduced the viability of EGFR mutant lung cancer cells, PC-9, and HCC827, even in the presence of HGF in vitro. In a xenograft model, temsirolimus suppressed the growth of PC-9 cells overexpressing the HGF-gene; this was associated with suppression of the mTOR signaling pathway and tumor angiogenesis. In contrast, erlotinib did not suppress this signaling pathway or tumor growth. Multiple mechanisms, including the inhibition of vascular endothelial growth factor production by tumor cells and suppression of endothelial cell viability, contribute to the anti-angiogenic effect of temsirolimus. These findings indicate that mTOR inhibitors may be useful for controlling HGF-triggered EGFR-TKI resistance in EGFR mutant lung cancer, and they provide the rationale for clinical trials of mTOR inhibitors in patients stratified by EGFR mutation and HGF expression status.

Document information provided by NCBI PubMed

Text Mining Data

4E-BP1 ⊣ HGF: " Both temsirolimus and everolimus inhibited the phosphorylation of p70S6K and 4E-BP1 , which are downstream targets of the mTOR pathway, and reduced the viability of EGFR mutant lung cancer cells, PC-9, and HCC827, even in the presence of HGF in vitro "

p70S6K ⊣ HGF: " Both temsirolimus and everolimus inhibited the phosphorylation of p70S6K and 4E-BP1, which are downstream targets of the mTOR pathway, and reduced the viability of EGFR mutant lung cancer cells, PC-9, and HCC827, even in the presence of HGF in vitro "

Manually curated Databases

No curated data.