Human methylome studies SRP033491 Track Settings
 
China_type_2_diebetes_family [SRS510685, SRS510686, SRS510687]

Track collection: Human methylome studies

+  All tracks in this collection (443)

Maximum display mode:       Reset to defaults   
Select views (Help):
CpG methylation ▾       HMR       AMR       PMD       CpG reads ▾      
Select subtracks by views and experiment:
 All views CpG methylation  HMR  AMR  PMD  CpG reads 
experiment
SRX386683 
SRX386684 
SRX386685 
SRX386687 
SRX386688 
SRX386689 
SRX386690 
SRX386692 
SRX386693 
SRX386694 
SRX386696 
SRX386697 
SRX386698 
SRX386700 
SRX386701 
SRX386702 
SRX386703 
SRX386705 
SRX386706 
SRX386707 
SRX386708 
SRX386710 
SRX386711 
SRX386712 
SRX386713 
SRX386718 
SRX386719 
SRX386721 
SRX386723 
SRX386724 
SRX386726 
SRX386728 
SRX386732 
experiment
 All views CpG methylation  HMR  AMR  PMD  CpG reads 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX386683  HMR  SRS510685 / SRX386683 (HMR)   Data format 
hide
 Configure
 SRX386683  CpG methylation  SRS510685 / SRX386683 (CpG methylation)   Data format 
hide
 SRX386684  HMR  SRS510685 / SRX386684 (HMR)   Data format 
hide
 Configure
 SRX386684  CpG methylation  SRS510685 / SRX386684 (CpG methylation)   Data format 
hide
 SRX386685  HMR  SRS510685 / SRX386685 (HMR)   Data format 
hide
 Configure
 SRX386685  CpG methylation  SRS510685 / SRX386685 (CpG methylation)   Data format 
hide
 SRX386687  HMR  SRS510685 / SRX386687 (HMR)   Data format 
hide
 Configure
 SRX386687  CpG methylation  SRS510685 / SRX386687 (CpG methylation)   Data format 
hide
 SRX386688  HMR  SRS510685 / SRX386688 (HMR)   Data format 
hide
 Configure
 SRX386688  CpG methylation  SRS510685 / SRX386688 (CpG methylation)   Data format 
hide
 SRX386689  HMR  SRS510685 / SRX386689 (HMR)   Data format 
hide
 Configure
 SRX386689  CpG methylation  SRS510685 / SRX386689 (CpG methylation)   Data format 
hide
 SRX386690  HMR  SRS510685 / SRX386690 (HMR)   Data format 
hide
 Configure
 SRX386690  CpG methylation  SRS510685 / SRX386690 (CpG methylation)   Data format 
hide
 SRX386692  HMR  SRS510685 / SRX386692 (HMR)   Data format 
hide
 Configure
 SRX386692  CpG methylation  SRS510685 / SRX386692 (CpG methylation)   Data format 
hide
 SRX386693  HMR  SRS510685 / SRX386693 (HMR)   Data format 
hide
 Configure
 SRX386693  CpG methylation  SRS510685 / SRX386693 (CpG methylation)   Data format 
hide
 SRX386694  HMR  SRS510685 / SRX386694 (HMR)   Data format 
hide
 Configure
 SRX386694  CpG methylation  SRS510685 / SRX386694 (CpG methylation)   Data format 
hide
 SRX386696  HMR  SRS510686 / SRX386696 (HMR)   Data format 
hide
 Configure
 SRX386696  CpG methylation  SRS510686 / SRX386696 (CpG methylation)   Data format 
hide
 SRX386697  HMR  SRS510686 / SRX386697 (HMR)   Data format 
hide
 Configure
 SRX386697  CpG methylation  SRS510686 / SRX386697 (CpG methylation)   Data format 
hide
 SRX386698  HMR  SRS510686 / SRX386698 (HMR)   Data format 
hide
 Configure
 SRX386698  CpG methylation  SRS510686 / SRX386698 (CpG methylation)   Data format 
hide
 SRX386700  HMR  SRS510686 / SRX386700 (HMR)   Data format 
hide
 Configure
 SRX386700  CpG methylation  SRS510686 / SRX386700 (CpG methylation)   Data format 
hide
 SRX386701  HMR  SRS510686 / SRX386701 (HMR)   Data format 
hide
 Configure
 SRX386701  CpG methylation  SRS510686 / SRX386701 (CpG methylation)   Data format 
hide
 SRX386702  HMR  SRS510686 / SRX386702 (HMR)   Data format 
hide
 Configure
 SRX386702  CpG methylation  SRS510686 / SRX386702 (CpG methylation)   Data format 
hide
 SRX386703  HMR  SRS510686 / SRX386703 (HMR)   Data format 
hide
 Configure
 SRX386703  CpG methylation  SRS510686 / SRX386703 (CpG methylation)   Data format 
hide
 SRX386705  HMR  SRS510686 / SRX386705 (HMR)   Data format 
hide
 Configure
 SRX386705  CpG methylation  SRS510686 / SRX386705 (CpG methylation)   Data format 
hide
 SRX386706  HMR  SRS510686 / SRX386706 (HMR)   Data format 
hide
 Configure
 SRX386706  CpG methylation  SRS510686 / SRX386706 (CpG methylation)   Data format 
hide
 SRX386707  HMR  SRS510686 / SRX386707 (HMR)   Data format 
hide
 Configure
 SRX386707  CpG methylation  SRS510686 / SRX386707 (CpG methylation)   Data format 
hide
 SRX386708  HMR  SRS510686 / SRX386708 (HMR)   Data format 
hide
 Configure
 SRX386708  CpG methylation  SRS510686 / SRX386708 (CpG methylation)   Data format 
hide
 SRX386710  HMR  SRS510687 / SRX386710 (HMR)   Data format 
hide
 Configure
 SRX386710  CpG methylation  SRS510687 / SRX386710 (CpG methylation)   Data format 
hide
 SRX386711  HMR  SRS510687 / SRX386711 (HMR)   Data format 
hide
 Configure
 SRX386711  CpG methylation  SRS510687 / SRX386711 (CpG methylation)   Data format 
hide
 SRX386712  HMR  SRS510687 / SRX386712 (HMR)   Data format 
hide
 Configure
 SRX386712  CpG methylation  SRS510687 / SRX386712 (CpG methylation)   Data format 
hide
 SRX386713  HMR  SRS510687 / SRX386713 (HMR)   Data format 
hide
 Configure
 SRX386713  CpG methylation  SRS510687 / SRX386713 (CpG methylation)   Data format 
hide
 SRX386718  HMR  SRS510687 / SRX386718 (HMR)   Data format 
hide
 Configure
 SRX386718  CpG methylation  SRS510687 / SRX386718 (CpG methylation)   Data format 
hide
 SRX386719  HMR  SRS510687 / SRX386719 (HMR)   Data format 
hide
 Configure
 SRX386719  CpG methylation  SRS510687 / SRX386719 (CpG methylation)   Data format 
hide
 SRX386721  HMR  SRS510687 / SRX386721 (HMR)   Data format 
hide
 Configure
 SRX386721  CpG methylation  SRS510687 / SRX386721 (CpG methylation)   Data format 
hide
 SRX386723  HMR  SRS510687 / SRX386723 (HMR)   Data format 
hide
 Configure
 SRX386723  CpG methylation  SRS510687 / SRX386723 (CpG methylation)   Data format 
hide
 Configure
 SRX386724  CpG methylation  SRS510687 / SRX386724 (CpG methylation)   Data format 
hide
 SRX386726  HMR  SRS510687 / SRX386726 (HMR)   Data format 
hide
 Configure
 SRX386726  CpG methylation  SRS510687 / SRX386726 (CpG methylation)   Data format 
hide
 SRX386728  HMR  SRS510687 / SRX386728 (HMR)   Data format 
hide
 Configure
 SRX386728  CpG methylation  SRS510687 / SRX386728 (CpG methylation)   Data format 
hide
 SRX386732  HMR  SRS510687 / SRX386732 (HMR)   Data format 
hide
 Configure
 SRX386732  CpG methylation  SRS510687 / SRX386732 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: China_type_2_diebetes_family
SRA: SRP033491
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX386683 SRS510685 0.685 3.3 30023 1478.3 4 813.8 357 29395.5 0.994 China_type_2_diebetes_family
SRX386684 SRS510685 0.687 3.3 30380 1455.6 4 1613.8 477 26853.8 0.994 China_type_2_diebetes_family
SRX386685 SRS510685 0.687 10.9 40597 1106.8 104 1058.1 1313 12166.3 0.994 China_type_2_diebetes_family
SRX386687 SRS510685 0.683 3.1 28904 1540.3 0 0.0 577 24378.3 0.994 China_type_2_diebetes_family
SRX386688 SRS510685 0.685 2.9 30174 1502.5 0 0.0 395 29853.2 0.994 China_type_2_diebetes_family
SRX386689 SRS510685 0.683 4.1 31693 1405.6 0 0.0 480 24751.8 0.994 China_type_2_diebetes_family
SRX386690 SRS510685 0.685 6.7 36159 1237.0 19 1243.0 809 16881.4 0.994 China_type_2_diebetes_family
SRX386692 SRS510685 0.684 4.4 32679 1369.0 91 944.1 651 22332.2 0.994 China_type_2_diebetes_family
SRX386693 SRS510685 0.676 4.5 32380 1364.3 3 1021.0 576 22821.4 0.994 China_type_2_diebetes_family
SRX386694 SRS510685 0.676 6.8 35799 1238.7 17 1396.1 848 16550.6 0.994 China_type_2_diebetes_family
SRX386696 SRS510686 0.670 2.6 27784 1632.4 3 1468.7 223 40024.2 0.994 China_type_2_diebetes_family
SRX386697 SRS510686 0.675 2.9 29094 1568.7 2 1798.5 452 29160.0 0.994 China_type_2_diebetes_family
SRX386698 SRS510686 0.647 6.8 34545 1289.9 27 1222.4 981 20239.9 0.995 China_type_2_diebetes_family
SRX386700 SRS510686 0.654 2.8 26764 1636.6 4 1151.8 368 34246.6 0.994 China_type_2_diebetes_family
SRX386701 SRS510686 0.657 3.0 27375 1597.4 4 1443.2 309 34820.4 0.994 China_type_2_diebetes_family
SRX386702 SRS510686 0.641 1.8 25066 1834.8 3 1212.0 277 41948.3 0.994 China_type_2_diebetes_family
SRX386703 SRS510686 0.658 6.5 34089 1281.0 42 1158.4 830 18626.3 0.994 China_type_2_diebetes_family
SRX386705 SRS510686 0.649 4.6 31248 1389.8 214 986.9 534 25241.1 0.994 China_type_2_diebetes_family
SRX386706 SRS510686 0.638 2.8 27222 1623.4 2 1231.0 248 40685.1 0.994 China_type_2_diebetes_family
SRX386707 SRS510686 0.640 4.8 30863 1396.0 16 1175.7 575 24633.6 0.993 China_type_2_diebetes_family
SRX386708 SRS510686 0.642 5.3 30834 1386.5 21 1099.9 756 20137.7 0.994 China_type_2_diebetes_family
SRX386710 SRS510687 0.694 2.6 27102 1603.2 0 0.0 429 32086.5 0.994 China_type_2_diebetes_family
SRX386711 SRS510687 0.698 2.9 28312 1530.1 1 585.0 420 29360.6 0.994 China_type_2_diebetes_family
SRX386712 SRS510687 0.695 2.5 27523 1583.5 2 653.5 442 32326.8 0.994 China_type_2_diebetes_family
SRX386713 SRS510687 0.695 1.7 25171 1729.0 0 0.0 276 43548.7 0.994 China_type_2_diebetes_family
SRX386718 SRS510687 0.687 2.9 26475 1589.3 2 1152.5 396 33394.1 0.994 China_type_2_diebetes_family
SRX386719 SRS510687 0.689 5.3 32694 1305.6 18 1127.3 887 19396.7 0.994 China_type_2_diebetes_family
SRX386721 SRS510687 0.681 2.2 25485 1685.0 0 0.0 357 35618.1 0.994 China_type_2_diebetes_family
SRX386723 SRS510687 0.685 2.8 27626 1565.0 1 797.0 479 31703.4 0.994 China_type_2_diebetes_family
SRX386724 SRS510687 0.653 1.6 24198 1899.8 0 0.0 167 59172.7 0.992 China_type_2_diebetes_family
SRX386726 SRS510687 0.691 4.8 31530 1347.0 95 1193.2 609 21757.0 0.994 China_type_2_diebetes_family
SRX386728 SRS510687 0.686 3.1 28482 1514.1 18 1016.4 356 31409.1 0.994 China_type_2_diebetes_family
SRX386732 SRS510687 0.688 4.5 31737 1350.2 55 1190.3 569 25470.8 0.994 China_type_2_diebetes_family

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.