ID:RBBP4_HUMAN DESCRIPTION: RecName: Full=Histone-binding protein RBBP4; AltName: Full=Chromatin assembly factor 1 subunit C; Short=CAF-1 subunit C; AltName: Full=Chromatin assembly factor I p48 subunit; Short=CAF-I 48 kDa subunit; Short=CAF-I p48; AltName: Full=Nucleosome-remodeling factor subunit RBAP48; AltName: Full=Retinoblastoma-binding protein 4; Short=RBBP-4; AltName: Full=Retinoblastoma-binding protein p48; FUNCTION: Core histone-binding subunit that may target chromatin assembly factors, chromatin remodeling factors and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the chromatin assembly factor 1 (CAF-1) complex, which is required for chromatin assembly following DNA replication and DNA repair; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling; the PRC2/EED-EZH2 complex, which promotes repression of homeotic genes during development; and the NURF (nucleosome remodeling factor) complex. SUBUNIT: Interacts with SUV39H1 and HDAC7 (By similarity). Binds directly to helix 1 of the histone fold of histone H4, a region that is not accessible when H4 is in chromatin. Subunit of the chromatin assembly factor 1 (CAF-1) complex, which is composed of RBBP4, CHAF1B and CHAF1A. Subunit of the core histone deacetylase (HDAC) complex, which is composed of HDAC1, HDAC2, RBBP4 and RBBP7. The core HDAC complex associates with SIN3A, ARID4B/SAP180, SAP18, SAP30, SAP130, SDS3/SAP45 and possibly ARID4A/RBP1 and ING1 to form the SIN3 HDAC complex. The core HDAC complex may also associate with MTA2, MBD3, CHD3 and CHD4 to form the nucleosome remodeling and histone deacetylase complex (the NuRD complex). The NuRD complex may also interact with MBD3L1 and MBD3L2. Interacts with MTA1. Subunit of the PRC2/EED-EZH2 complex, which is composed of at least EED, EZH2, RBBP4, RBBP7 and SUZ12. The PRC2/EED-EZH2 complex may also associate with HDAC1. Component of the PRC2/EED- EZH1 complex, which includes EED, EZH1, SUZ12, RBBP4 and AEBP2. Part of the nucleosome remodeling factor (NURF) complex which consists of SMARCA1; BPTF; RBBP4 and RBBP7. Interacts with the viral protein-binding domain of the retinoblastoma protein (RB1). Interacts with SPEN/MINT. Interacts with BRCA1. Interacts with CREBBP, and this interaction may be enhanced by the binding of phosphorylated CREB1 to CREBBP. Component of the DREAM complex (also named LINC complex) at least composed of E2F4, E2F5, LIN9, LIN37, LIN52, LIN54, MYBL1, MYBL2, RBL1, RBL2, RBBP4, TFDP1 and TFDP2. The complex exists in quiescent cells where it represses cell cycle-dependent genes. It dissociates in S phase when LIN9, LIN37, LIN52 and LIN54 form a subcomplex that binds to MYBL2. INTERACTION: Q13547:HDAC1; NbExp=5; IntAct=EBI-620823, EBI-301834; Q8IX07:ZFPM1; NbExp=4; IntAct=EBI-620823, EBI-3942619; SUBCELLULAR LOCATION: Nucleus. SIMILARITY: Belongs to the WD repeat RBAP46/RBAP48/MSI1 family. SIMILARITY: Contains 6 WD repeats.
The RNAfold program from the Vienna RNA Package is used to perform the secondary structure predictions and folding calculations. The estimated folding energy is in kcal/mol. The more negative the energy, the more secondary structure the RNA is likely to have.
ModBase Predicted Comparative 3D Structure on Q09028
Front
Top
Side
The pictures above may be empty if there is no ModBase structure for the protein. The ModBase structure frequently covers just a fragment of the protein. You may be asked to log onto ModBase the first time you click on the pictures. It is simplest after logging in to just click on the picture again to get to the specific info on that model.
Orthologous Genes in Other Species
Orthologies between human, mouse, and rat are computed by taking the best BLASTP hit, and filtering out non-syntenic hits. For more distant species reciprocal-best BLASTP hits are used. Note that the absence of an ortholog in the table below may reflect incomplete annotations in the other species rather than a true absence of the orthologous gene.