ID:SOX17_HUMAN DESCRIPTION: RecName: Full=Transcription factor SOX-17; FUNCTION: Acts as transcription regulator that binds target promoter DNA and bends the DNA. Binds to the sequences 5'- AACAAT-'3 or 5'-AACAAAG-3'. Modulates transcriptional regulation via WNT3A. Inhibits Wnt signaling. Promotes degradation of activated CTNNB1. Plays a key role in the regulation of embryonic development. Required for normal looping of the embryonic heart tube. Required for normal development of the definitive gut endoderm. Probable transcriptional activator in the premeiotic germ cells (By similarity). SUBUNIT: Interacts with CTNNB1, LEF1 and TCF4 (By similarity). SUBCELLULAR LOCATION: Nucleus (By similarity). TISSUE SPECIFICITY: Expressed in adult heart, lung, spleen, testis, ovary, placenta, fetal lung, and kidney. In normal gastrointestinal tract, it is preferentially expressed in esophagus, stomach and small intestine than in colon and rectum. DISEASE: Defects in SOX17 are the cause of vesicoureteral reflux type 3 (VUR3) [MIM:613674]. VUR3 is a disease belonging to the group of congenital anomalies of the kidney and urinary tract. It is characterized by the reflux of urine from the bladder into the ureters and sometimes into the kidneys, and is a risk factor for urinary tract infections. Primary disease results from a developmental defect of the ureterovesical junction. In combination with intrarenal reflux, the resulting inflammatory reaction may result in renal injury or scarring, also called reflux nephropathy. Extensive renal scarring impairs renal function and may predispose patients to hypertension, proteinuria, renal insufficiency and end-stage renal disease. SIMILARITY: Contains 1 HMG box DNA-binding domain. SIMILARITY: Contains 1 Sox C-terminal domain.
The RNAfold program from the Vienna RNA Package is used to perform the secondary structure predictions and folding calculations. The estimated folding energy is in kcal/mol. The more negative the energy, the more secondary structure the RNA is likely to have.
ModBase Predicted Comparative 3D Structure on Q9H6I2
Front
Top
Side
The pictures above may be empty if there is no ModBase structure for the protein. The ModBase structure frequently covers just a fragment of the protein. You may be asked to log onto ModBase the first time you click on the pictures. It is simplest after logging in to just click on the picture again to get to the specific info on that model.
Orthologous Genes in Other Species
Orthologies between human, mouse, and rat are computed by taking the best BLASTP hit, and filtering out non-syntenic hits. For more distant species reciprocal-best BLASTP hits are used. Note that the absence of an ortholog in the table below may reflect incomplete annotations in the other species rather than a true absence of the orthologous gene.