Human methylome studies SRP059772 Track Settings
 
Whole genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver [oxBS-Seq and BS-Seq] [Liver, Lung]

Track collection: Human methylome studies

+  All tracks in this collection (438)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG reads ▾       AMR       CpG methylation ▾       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG reads  AMR  CpG methylation  HMR 
experiment
SRX1069706 
SRX1069708 
SRX1069710 
SRX1069712 
SRX1069714 
SRX1069716 
SRX1069718 
SRX1069720 
SRX1069722 
SRX1069724 
SRX1069726 
SRX1069728 
SRX1069730 
SRX1069732 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX1069706  HMR  Liver / SRX1069706 (HMR)   Data format 
hide
 Configure
 SRX1069706  CpG methylation  Liver / SRX1069706 (CpG methylation)   Data format 
hide
 SRX1069708  HMR  Liver / SRX1069708 (HMR)   Data format 
hide
 Configure
 SRX1069708  CpG methylation  Liver / SRX1069708 (CpG methylation)   Data format 
hide
 SRX1069710  HMR  Liver / SRX1069710 (HMR)   Data format 
hide
 Configure
 SRX1069710  CpG methylation  Liver / SRX1069710 (CpG methylation)   Data format 
hide
 Configure
 SRX1069712  CpG methylation  Liver / SRX1069712 (CpG methylation)   Data format 
hide
 SRX1069714  HMR  Liver / SRX1069714 (HMR)   Data format 
hide
 Configure
 SRX1069714  CpG methylation  Liver / SRX1069714 (CpG methylation)   Data format 
hide
 SRX1069716  HMR  Liver / SRX1069716 (HMR)   Data format 
hide
 Configure
 SRX1069716  CpG methylation  Liver / SRX1069716 (CpG methylation)   Data format 
hide
 SRX1069718  HMR  Liver / SRX1069718 (HMR)   Data format 
hide
 Configure
 SRX1069718  CpG methylation  Liver / SRX1069718 (CpG methylation)   Data format 
hide
 Configure
 SRX1069720  CpG methylation  Liver / SRX1069720 (CpG methylation)   Data format 
hide
 SRX1069722  HMR  Lung / SRX1069722 (HMR)   Data format 
hide
 Configure
 SRX1069722  CpG methylation  Lung / SRX1069722 (CpG methylation)   Data format 
hide
 SRX1069724  HMR  Lung / SRX1069724 (HMR)   Data format 
hide
 Configure
 SRX1069724  CpG methylation  Lung / SRX1069724 (CpG methylation)   Data format 
hide
 SRX1069726  HMR  Lung / SRX1069726 (HMR)   Data format 
hide
 Configure
 SRX1069726  CpG methylation  Lung / SRX1069726 (CpG methylation)   Data format 
hide
 SRX1069728  HMR  Lung / SRX1069728 (HMR)   Data format 
hide
 Configure
 SRX1069728  CpG methylation  Lung / SRX1069728 (CpG methylation)   Data format 
hide
 SRX1069730  HMR  Lung / SRX1069730 (HMR)   Data format 
hide
 Configure
 SRX1069730  CpG methylation  Lung / SRX1069730 (CpG methylation)   Data format 
hide
 SRX1069732  HMR  Lung / SRX1069732 (HMR)   Data format 
hide
 Configure
 SRX1069732  CpG methylation  Lung / SRX1069732 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Whole genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver [oxBS-Seq and BS-Seq]
SRA: SRP059772
GEO: GSE70090
Pubmed: 27737935

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX1069706 Liver 0.636 17.3 36773 1203.2 1208 992.6 1508 18742.9 0.989 GSM1716957: liver_N1_BS; Homo sapiens; Bisulfite-Seq
SRX1069708 Liver 0.644 17.3 35301 1089.3 4372 1094.6 1408 20649.5 0.989 GSM1716959: liver_T1_BS; Homo sapiens; Bisulfite-Seq
SRX1069710 Liver 0.634 17.0 35197 1181.5 1489 978.8 1335 21232.7 0.989 GSM1716961: liver_N2_BS; Homo sapiens; Bisulfite-Seq
SRX1069712 Liver 0.412 24.6 77798 15083.2 1065 977.7 5578 244656.7 0.990 GSM1716963: liver_T2_BS; Homo sapiens; Bisulfite-Seq
SRX1069714 Liver 0.629 18.3 33298 1184.1 1953 1008.1 1289 18553.5 0.989 GSM1716965: liver_N3_BS; Homo sapiens; Bisulfite-Seq
SRX1069716 Liver 0.635 18.9 38573 1263.5 4064 1032.3 1983 372783.7 0.989 GSM1716967: liver_T3_BS; Homo sapiens; Bisulfite-Seq
SRX1069718 Liver 0.648 13.7 35026 1275.0 881 995.8 1668 27553.7 0.985 GSM1716969: liver_N4_BS; Homo sapiens; Bisulfite-Seq
SRX1069720 Liver 0.467 13.9 46875 20886.4 2434 1027.7 3516 405920.5 0.990 GSM1716971: liver_T4_BS; Homo sapiens; Bisulfite-Seq
SRX1069722 Lung 0.644 25.8 38547 1098.9 999 948.7 2953 9306.1 0.990 GSM1716973: lung_N1_BS; Homo sapiens; Bisulfite-Seq
SRX1069724 Lung 0.596 26.7 36334 1162.6 3207 1042.8 2218 299215.0 0.990 GSM1716975: lung_T1_BS; Homo sapiens; Bisulfite-Seq
SRX1069726 Lung 0.638 18.0 36220 1125.5 1122 985.4 1584 13892.6 0.989 GSM1716977: lung_N2_BS; Homo sapiens; Bisulfite-Seq
SRX1069728 Lung 0.615 17.5 35883 1133.3 1008 990.5 1153 13952.2 0.989 GSM1716979: lung_T2_BS; Homo sapiens; Bisulfite-Seq
SRX1069730 Lung 0.658 17.5 38518 1126.0 957 944.7 1742 14495.4 0.989 GSM1716981: lung_N3_BS; Homo sapiens; Bisulfite-Seq
SRX1069732 Lung 0.562 18.2 38649 1304.4 6426 4042.0 1681 542949.2 0.991 GSM1716983: lung_T3_BS; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.